Computing for Eigenpairs on Globally Convergent Iterative Method for Hermitian Matrices
نویسندگان
چکیده
منابع مشابه
Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملPreconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices
We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positiv...
متن کاملAn iterative method for solving the continuous sylvester equation by emphasizing on the skew-hermitian parts of the coefficient matrices
We present an iterative method based on the Hermitian and skew-Hermitian splitting for solving the continuous Sylvester equation. By using the Hermitian and skew-Hermitian splitting of the coefficient matrices A and B, we establish a method which is practically inner/outer iterations, by employing a CGNR-like method as inner iteration to approximate each outer iterate, while each outer iteratio...
متن کامل